Electrostatic free energy and its variations in implicit solvent models.
نویسندگان
چکیده
A mean-field approach to the electrostatics for solutes in electrolyte solution is revisited and rigorously justified. In this approach, an electrostatic free energy functional is constructed that depends solely on the local ionic concentrations. The unique set of such concentrations that minimize this free energy are given by the usual Boltzmann distributions through the electrostatic potential which is determined by the Poisson-Boltzmann equation. This approach is then applied to the variational implicit solvent description of the solvation of molecules [Dzubiella, Swanson, McCammon, Phys. Rev. Lett. 2006, 96, 087802; J. Chem. Phys. 2006, 124, 084905]. Care is taken for the singularities of the potential generated by the solute point charges. The variation of the electrostatic free energy with respect to the location change of solute-solvent interfaces, that is, dielectric boundaries, is derived. Such a variation gives rise to the normal component of the effective surface force per unit surface area that is shown to be attractive to the fixed point charges in the solutes. Two examples of applications are given to validate the analytical results. The first one is a one-dimensional model system resembling, for example, a charged solute or cavity in a one-dimensional channel. The second one, which is of its own interest, is the electrostatic free energy of a charged spherical solute immersed in an ionic solution. An analytical formula is derived for the Debye-Hückel approximation of the free energy, extending the classical Born's formula to one that includes ionic concentrations. Variations of the nonlinear Poisson-Boltzmann free energy are also obtained.
منابع مشابه
Variational Implicit Solvation with Solute Molecular Mechanics: From Diffuse-Interface to Sharp-Interface Models
Central in a variational implicit-solvent description of biomolecular solvation is an effective free-energy functional of the solute atomic positions and the solute-solvent interface (i.e., the dielectric boundary). The free-energy functional couples together the solute molecular mechanical interaction energy, the solute-solvent interfacial energy, the solute-solvent van der Waals interaction e...
متن کاملImplicit solvent models.
Implicit solvent models for biomolecular simulations are reviewed and their underlying statistical mechanical basis is discussed. The fundamental quantity that implicit models seek to approximate is the solute potential of mean force, which determines the statistical weight of solute conformations, and which is obtained by averaging over the solvent degrees of freedom. It is possible to express...
متن کاملCoupling nonpolar and polar solvation free energies in implicit solvent models.
Recent studies on the solvation of atomistic and nanoscale solutes indicate that a strong coupling exists between the hydrophobic, dispersion, and electrostatic contributions to the solvation free energy, a facet not considered in current implicit solvent models. We suggest a theoretical formalism which accounts for coupling by minimizing the Gibbs free energy of the solvent with respect to a s...
متن کاملUsing Implicit/Explicit Salvation Models to Theoretical Study Tautomerism in 7H-purine-2, 6-diamine
A theoretical study at the B3LYP/6-31++G(d,p) level was performed on the tatumerization of 7H-purine-2, 6-diamine into 9H-purine-2, 6-diamine. Such a tautomerism can take place via three different pathways namely A, B, and C. The energetic results associated with the gas phase reveal that pathways A, B, and C display a very high activation Gibbs free energy of 45.1, 68.6 and 48.9 kcal/mol, resp...
متن کاملSolvent models for protein-ligand binding: Comparison of implicit solvent poisson and surface generalized born models with explicit solvent simulations
Solvent effects play a crucial role in mediating the interactions between proteins and their ligands. Implicit solvent models offer some advantages for modeling these interactions, but they have not been parameterized on such complex problems, and therefore, it is not clear how reliable they are. We have studied the binding of an octapeptide ligand to the murine MHC class I protein using both e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The journal of physical chemistry. B
دوره 112 10 شماره
صفحات -
تاریخ انتشار 2008